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The moments method and damped systems 
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Groupe de Dynamique des Phases Condew&, UA CNRS 233, cpO26, Univemit6 de 
Montpellier 11, Sciences et Techniques du Laoguedoc, 34095 Montpellier Cedex 5 ,  France 

Received 3 November 1993 

Abstraet The moments method was shown to be very useful for determining the linear 
response of very large harmonic systems. In the presence of anharmonicity or electroo-phonon 
coupling, the phonon self-energy appears in the one-phonon propagator. The phonon frequency 
is then renormalized and lhe system is damped. In this paper. we show that it is possible to 
extend the moments M o d  to compute the response of these damped systems. The method 
involves inuoducing a medimensional density functional that can be calculated by the moments 
techniques and which allows the computation of the response function. We illusbate these results 
via applications to several models: systems with constant damping, systems of coupled relaxation 
modes and oscillators, and systems with elechun-phonon coupling. 

1. Introduction 

We show in this paper that the moments method provides a new approach to compute 
dynamical properties of damped systems. The quantum theory of solids describes crystal 
properties in terms of elementary excitations and their mutual interaction. Dynamical 
properties are represented by phonons and their interactions mainly with other phonons 
(anharmonicity), elecbons (electron-phonon coupling) and magnons (phonon-magnon 
coupling). 

Model construction is an important part of the theory of lattice vibration. Practically all 
models developed for very large realistic systems use the harmonic approximation. Only 
some special studies concerning phase transitions and linear chains ( ID  systems) use an 
anharmonic potential (see Currat and Janssen 1988). In the harmonic approximation, the 
Bom-Von Karman theory, forces between atoms are specified by the second derivatives of 
the crystal potential with respect to the atomic displacements. The squares of the normal- 
mode frequencies are the eigenvalues of the dynamic matrix. The dynamic matrix being 
symmetrical, the eigenvalues are real, and in the harmonic approximation, the lifetimes 
of the phonon states are infinite. Damping arises from the coupling with other elementary 
excitations. The effect of anhannonic terms or electron-phonon coupling can be summarized 
in the following way: Each phonon frequency of the harmonic material undergoes a complex 
shift, the self-energy n ( w ,  T ) ,  the real part of which gives the change in the value of the 
frequency and the imaginary part of which is the inverse of the lifetime of the phonon 
states. Both parts are frequency- and temperature-dependent. The response function can 
be reduced to an evaluation of the phonon propagator of the system, which depends on the 
self-energy. In the harmonic approximation, the moments method allows determination of 
the response functions without any diagonalization of the dynamic matrix. It is thus possible 
to work with very large harmonic disordered systems (up to N = 8000000 @oyer et al 
1991, 1992)). 
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Direct evaluation of the response functions of damped materials requires knowledge of 
all frequencies and eigenvectors of the undisturbed system. Then one computes the self- 
energy and then the response functions of the material. In very large disordered material, 
direct determinations of eigenfrequencies and eigenvectors are impossible. It was therefore 
interesting to investigate applying the momen& method to determinate the response functions 
of damped systems without any matrix diagonalization. In the first step, we assume here 
that the self-energy n(o, T )  is known, since direct evaluation of this function is quite 
complicated. 

In order to outline the formalism, in section 2 we first review the dynamics of harmonic 
systems, anharmonic systems and systems with electron-phonon coupling in direct space. 
In section 3 we give some elements of the response theory and we show that the response 
function is obtained from an integro-differential equation of motion. In section 4, we show 
how to compute the response function with moments formalism. In the last section, we 
provide illustrations via examples of usual problems concerning condensed matter. 

2. Dynamical the04 

2.1. Harmonic systems 

Let us consider a d-dimensional system with N atoms. We start from the harmonic 
Hamiltonian: 

H = i(P I P) + i(XlD[X) (1) 

where 

and 

Here u.(n) denotes the Cartesian or component of displacement of the nth atom with mass 
m,, p a ( n )  is the conjugated momentum of u,(n), D is the dynamic matrix of the system, 
lorn) is the basis in the direct-space representation, and Q.p(n,n') is the second-order 
derivative of the potential energy in terms of atomic displacements. 

The eigenfrequencies 0: and the eigenmodes I j )  are such that 

Dlj)  = oflj). ( 5 )  

In the representation I j )  the Hamiltonian is written as 
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with 

So we have 

and 

In classical mechanics, p , (n )  = m&(n) so that p j  = qj and we obtain the harmonic 
solution q, = qoexp(-iojt). In quantum mechanics, with the commutation relations 
[Fa@), ;&')I = i?iS,pS,,.t for the operators tip(n') and F&). we obtain the Hamiltonian 
operator = c j ( i ,  + f)kwj. The basic properties of the harmonic oscillators are well 
known and so the main problem, regardless of the formalism used, involves determining 
the eigenfrequencies w: and eigenmodes I j) of the dynamic matrix D. 

We focus attention here on determination of the response functions. The temperature 
or thermodynamics Green function plays a central role (Abrikosov et al 1963): 

G(U,(n, r ) ,  i ,dn' ) )  = (WW, r ) ,  ips (" ' ) ) )  (10) 

For instance, dielectric properties can be obtained by expanding the dipole moment M 
where 7 = it and T is the time ordering operator. 

of the system in an atomic displacement series 

where q , ~ ( n )  is the atomic charge tensor. The dielectric susceptibility is then given by 
( B  = l / k T ,  E + 0+) (Cowley 1964a, b) 

= j3 X(anlQGQI@n') (12) 

(13) 

""' 

where the elements of the Q matrix are equal to [qep(n)/m~'2]S.,,~ and 

(anlGIj3n') = G(irp(n')i&(n), w + k). 

G(i&z')ti.(n), w + is) is the Fourier transform of G(tip(iz')&(n), r )  obtained by the 
Matsubara (1956) technique. For instance, the imaginary part of the susceptibility for 
harmonic systems is given by 

(14) 
1 

x$(w) = ~ C a , : ( j ) u ~ ( j ) - [ s ( o - o j )  20j  - s ( w + w j ) ~  
i 

with 

The expressions (14) and (15) have been widely used to determine the linear response 
using the spectral moments method (Benoit 1987). 
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2.2. Damped systems 

We focus attention here on systems with phonon-phonon or electron-phonon coupling. The 
phonon propagator is then given by the Dyson equation 

G-'(w) = (G')-'(w) - ~ I ~ ( o J )  (16) 

where n ( w )  is the self-energy of the propagator with n ( w )  = A(w) - ir(w), where A(@) 
and r(o) are even and odd real functions of w respectively. We consider here two usual 
forms for self-energy. 

2.2.1. Anharmonic systems. To take into account the disorder, we work in direct space or 
site representation. Then, by the same method used for the perfect crystal (Maradudin and 
Fein 1962, Cowley 1963), it is possible to show that the contribution of the cubic term of 
potential energy to self-energy in direct space is given by 

where 

n2 - n~ 
+ o l - w 2 + ( w + i s ) '  

Here nj is the Boltzmann occupation number of one-phonon state I j )  and 

%py(nl ,  nz. nd  is the cubic term in development of potential energy in terms of the atomic 
displacement components: 

It is clearly necessary to compute the eigenfrequencies and eigenvectors of harmonic 
(undisturbed) systems to evaluate the self-energy . Note that non-diagonal self-energy 
elements, which are usually neglected in Fourier space, are here taken into account. For 
large disordered lattices it is not possible to obtain these quantities by direct diagonalization. 
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2.2.2. Electmn-phonon coupling. Let us consider a one-dimensional chain and the Su- 
Schrieffer-Heeger (SSH) Hamiltonian (Su et a1 1980): 

Here operator c : ~  (c”,.,) creates (annihilates) an electron of spin s(&1/2) on the nth atom, 
M is the atomic mass and K the spring constant for the elastic energy, U. represents the 
displacement of the nth atom, and & + I , ~  is the hopping integal, which can be expanded as 

where to is the hopping integral for the non-dimerized chain and a the electron-phonon 
coupling constant. It is possible to show that the phonon self-energy of this chain (Hick 
and Tinka-Gammel 1988, El Machtani-Idrissi 1993) is given by 

(nln(4ln’) =& d(ml,n)B(jl,h,ml)B(jz,il.mz) 
jl j” mznn’ 

with 

Here (m I j )  is the mth component of the l j )  state with energy E j , d ( n , n )  = -1, 
d(n,  n + 1) = 1, zero otherwise, and nj is the Fermi occupation number of state l j ) .  

2.2.3. Approximate self-energy forms. Evaluation of self-energy is a complicated problem 
in large disordered systems and different approximations can be discussed. The lowest is 
constant damping, which is obtained by developing self-energy to first order with respect 
to frequency. We obtain 

(anln(w)lpn’) = -iwgap(n,n‘) = -iw(anlrolpn‘) (25) 

where To is called the dissipation mahix. In the limit of long waves, we obtain the usual 
dynamic equation with a dissipative force proportional to the velocity. 

Now, if we develop self-energy with respect to frequency to the third order, we obtain 

(anllT(w)lpn’) = (anlH + KwZ - i(Lw + Mw3)1pn’) (26) 

where H, K. L and M are constant matrices. We shall show that this situation corresponds 
to relaxation mde-oscillator coupling. 
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3. Linear response 

For harmonic systems, the phonon propagator is given by 

G0(o) = (1/,9)(D - Iw*)-'. (27) 

To evaluate the linear response, it is very useful to note that the susceptibility (12) is 
formally identical (see appendix) to the response obtained from the following equation of 
motion: 

IX) = -DIX) - / n o  - toix(t')) dr' + QIE(~)) (28) 

where IE(t))  represents an external electric field 

The Green function is given by (from equations (16) and (27) and from Martin and 
Schwinger (1959), Wehner (1966) and Doniach and Sondheimer (1974)) 

(30) 

We now show that it is possible to determine the response function of the system from 
equations (E), (28) and (30) without determining the eigenfrequencies and eigenvectors. 
We first develop the method for a simple damped system. It is very useful to transform 
the equation in order to manipulate matrices that are not dependent on the frequency. The 
method for the general situation will be presented in a subsequent section. 

With constant damping the equation of motion (28), without the electric field, can be 
written with the help of (25): 

1 s B 
G + D G -  lT(t-r")G(r"-t')dt"= -Is(t-r') .  

IX) + rolX(t)) + DlX(t)) = 0 (31) 

which can be expressed by introducing velocity 

dlX)/dt = IV) (32) 

and 

dlV)/dt = -DlX) - roll'). 

Equations (32) and (33) can be written in matrix form with 

IR) = (1;;) 

(33) 

(34) 

The motion equation is now written 

dlR)/di = -61R) (35) 
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with 

The matrix D is non-symmetric and the eigenvectors are complex. If ro = 0, the 
imaginary part of the eigenvalues of D are the square roots of the eigenvalues of D, and 
this form of D can be used to determine directly the density of the phonon states g(o) of 
the system (Rahmani 1993, Rahmani et al 1993b). Let I j ) R  and I j ) L  be the right and left 
eigenvectors of the matrix D. These eigenvectors satisfy 

D I j ) R  = h j I j ) R  (37) 
and 

L ( j l D  =L (jlfij. 

Equation (38) is equivalent to 

D + t j ) L  = f i J I j ) L  (39) 

where Dt is the adjoint matrix of D. Left and right eigenvectors are distinct and biorthogonal 
(Gantmacher 1966, Isaacson and Keller 1966): 

L ( j  I j ' ) R  = 8 j j j .  (40) 

The set of 'left' and 'right' eigenvalues are identical. If the matrix D is simple, the 
eigenvectors are linearly independent and a vector Iv) can be written 

IV) = C a j I j ) R .  (41) 

djlv)  = aj (42) 

j 

We multiply (41) on both sides by L ( j ( .  With the help of (40). we obtain 

and with the help of (41) and (42), we obtain 

We thus obtain the following relation, which is equivalent to the closure relation with 
Hermitian matrix: 

C ( l j ) R L ( j l )  = I  (44) 
i 

with both sets of eigenvalues arranged in the same order. 

the IMSL library. From (37) and (40) we obtain 
Eigenvalues and eigenvectors of D and Dt are determined using the DSPEV program of 

- 
L ( j l D l j ' ) R  = hj$j, (45) 

These relations are used in the following calculations of the linear response of the systems. 
We now consider the evaluation of the response function with the expression (35) for the 
motion equation. 
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3.1. Dielectric properties 

The motion equation (35) now becomes with (28) 

dlR)/dt = -DIR) +QAIE) (47) 

with the charge matrix QA given by 

0 0  
'"=(O Q) 

where matrix Q is the (dN x dN) charge matrix. 
We introduce the Green matrix g such that ( B  = 1) 

dg/dt + Dg = 16(t - t').  (49) 

The solution of (47) can be written 

IR(t)) = jr g(t - t')Q*IE(t'))dr' 

IM) = Q ~ I R )  

-m 

Equation (1 1) is now written as 

where the charge matrix QR is given by 

Q O  
Q R = ( 0  0). 

From (49), the Fourier transform of the Green function g is given by 

g(w) = (D - &a)-'. 

x , ~  (4 = z ( a n  IQRg(dQAIBn'). 

(53) 
Combining equations (50) and (51), and following the same method as described in the 
appendix, for dielectric susceptibility, we obtain 

(54) 

Now, taking into account relations (45) and (46) and the closure equation (44), we 
""' 

obtain 

with 

and 

Before developing the moments method to evaluate (55), we show how to evaluate 
scattering properties of damped materials. 
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3.2. Scattering properties 

In the previous section, the response of a material to an external macroscopic field was 
studied. Another way to study a material is to scatter particles from them. Two examples 
of this type of experiment are the Raman scattering of light and the scattering of thermal 
neutrons. These different types of scattering can be treated with the same formalism. 

Let h Q d  and fro be momentum and energy transferred by the neutron to the scattering 
system and ko and IC the initial and final wavevectors of the neutron. Then, the differential 
cmss section U(& W )  for slow neutron scattering can be written 

(58) 

The scattering law s(Qd, W )  is the Fourier transform of the thermodynamic correlation 
function g(Qd, t )  (Van Hove 1954, Glauber 1955, Lovesey 1986) 

U(Qd, W )  = dzu/dS2ddE = (k/ko)S(Qd, 0). 

S(QdrW) = - exP(i@t) g(Qd,t)dt (59) 2RA ' J  
with 

g(Qd. t )  = (A(-% f)A(Qdl t)) (60) 

where A(Qd. t) is analogous to the Qd component of the density of the system: 

Here b, and r.(t) are the Fermi scattering length and the position of the nth atom 
respectively. The correlation function can be written 

g(Qd,t) = xbnbn,exP[iQd-(r2* -rf)lexP(-W, -Wd)eXP 1 Qdwf?d&p(n.n'.t) 
n"' ( ,a 

(62) 

with rn( t )  = r," + U,&) where r," is the equilibrium position of the nth atom. W, is the 
Debye-Waller factor of the nth atom and 

Ce,dn, n', t )  = (u.&)u,y(o)). (63) 

Expanding the correlation function g(Qd, t )  we can write the scattering law 

X exP(-Wn - wn*)  Qd,QdaCa+8(n, n', W )  -k . . . (64) 

where c,B(n. n', W )  is the Fourier transform of CmB(n, nrs t ) ,  

displacement correlation function. It is well known that 
Similarly the dielectric susceptibility is directly related to the Fourier transform of the 
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it is easy to show that 

j a b ( @ )  = (1 - e-b*”)Sap(w). (68) 

This is the fluctuation-dissipation theorem, which is found in many various forms in the 
literature. Now with the help of (11) and (65), we obtain 

and from (63), (64) and (66) 

Equation (70), with (68), is exactly the same form as (69). The only difference is that 
thecharge tensor qWp(n)/m!” has been replaced by ( b 0 / m ~ ’ ’ ) Q ~  exp(-W,) exp(-iQd.r,) 
and the result multiplied by the factor 

(71) 

where n(o)  is the Boltzmann occupation number. Thus, relations (68), (69) and (70) show 
that inelastic neutron scattering of damped systems can be obtained by relation (55) but with 
a different potential seen by the plane wave. However, direct determination of (55) requires 
determination of the eigenvalues and left and right eigenvectors of matrix D. It is well known 
that there are some problems in direct diagonalization and determination of eigenvectors 
of non-symmetrical matrices in the presence of zero eigenvalues and degeneracy. We shall 
not have such difficulties with the moments method. In several publications (Benoit ef al 
1992a, b and references therein), we have shown that for harmonic systems the moments 
method is a powerful tool to study dynamic properties of solids and that the response 
functions can be obtained without any diagonalization of the dynamic matrix. We now 
show how these moment techniques can be applied to compute physical properties of damped 
systems. 

2(k/ko)(l - e-@’”)-’ = 2(k/h) [n(o)  + 11 

4. Moments method 

For harmonic solids, the moments method was first used by Montroll (1942) to calculate the 
density of one-phonon states. The method was improved by Blumstein and Wheeler (1973) 
and Wheeler et al (1974). In the dynamics of condensed matter, the possibility of directly 
determining moments of the response function from the dynamic matrix was pointed out 
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for the first time by Galtier and Benoit (1981) and the exact evaluation of the response 
was developed later by Benoit (1987, 1989) and applied to different systems (Benoit et al 
1990, 1992a. b, Poussigue etal 1991, Royer etal 1991, 1992. Royer 1992, Rahmani 1993. 
Rahmani et al 1993, 1994). 

Brownian motion and Markovian processes (Dupuis 1967, Scheunders and Naudts 1990) 
and excitation transfer in disordered systems (McGraw and Meny 1985) have also been 
studied by the moments technique. In solid-state physics concerning studies of electronic 
properties, the moments method has been developed by Cyrot-Lackmann (1967), Gaspard 
and Cyrot-Lackmann (1973), Lambin and Gaspard (1982), Turchi eta!  (1982) and Jurczek 
(1985). These moments methods, which have been called, successively, modified (Blumstein 
and Wheeler 1973), generalized (Lambin and Gaspard 1982) orthogonalized (Jurczek 1985), 
spectral (Benoit 1989) and inverse (Scheunders and Naudts 1990), are mathematically 
equivalent to the Lanczos (1950) or the recursion procedure (Haydock er al 1972, Haydock 
1980) in many aspects (Jurczek 1985, Benoit eta! 1992b). In fact the method of moments 
is much more general than the Lanczos procedure and was solved by Stieltjes (1884). 
Furthermore, for many physical problems, moments of density of states play a central 
role: they represent or are directly connected to the physical properties of the systems, 
heat capacity (Maradudin et a1 1963). sum rules (Benoit 1987, Luck 1992), and they are 
linear with the density of states (Gaspard and Lambin 1984). Thus we prefer to work with 
moments and we simply call the method by which the moments are actually computed the 
'moments method'. 

With this method, in harmonic solids, to evaluate the response function (14), we 
introduce an auxiliary density function, which is a sum of delta peaks (Benoit 1987). This 
function is developed in a continued fraction and the method involves determining the 
coefficients of this continued fraction directly from the dynamic matrix. With damped 
systems, we cannot represent the response function (55) as a sum of Dirac peaks. 
Furthermore, the matrix D is non-symmetric and sometimes complex. Very few studies 
have dealt with the computation of the eigenvalues of large non-symmebic matrices. The 
biorthogonalization Lanczos algorithm can be used to obtain a few eigenvalues (Kim 
and Chronopoulos 1992) but this method is sometimes unstable (Saad 1980). Dominant 
eigenvalues and corresponding eigenvectors can also be obtained with the Amoldi method 
(Sad  1980). However, evaluation of the response function (55) requires determination 
of all eigenvectors and eigenvalues of the D matrix, which cannot be obtained by the 
biorthogonalization Lanczos algorithm or by the Amoldi method. It is thus necessary to 
develop a new technique where the eigenvectors and eigenvalues are not explicitly computed. 

Let us define the following auxiliary density function 

with A j  = mj + ipj. Recall that A, and A; are eigenvalues of D. Now let us define the 
following transform of go&. y )  

with z = x + i y  and u =iw. 
Combining relations (72) and (73), we obtain 

j m=O 
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and with the help of (56) and (57) and closure relation (44). we obtain 

m 

%p(u) = - &fl/um+' (75) 
m=O 

where 

CL:# = g&,y)?"dy = C(ixnlQRDm+'QA IB n' ). (76) 1 nn' 

The quantities &Ep are real (from (76)) but are not the two-dimensional moments of the 
function g&,y) in the classical sense (Shohat and Tamarkin 1963). However, these 
quantities are directly connected to the two-dimensional moments of the function gop(x, y). 
In the following we continue to call the &' moments of gap(x, y) according to the definition 
(76). We note that these quantities can be determined directly from dynamic and charge 
matrices without any computation of eigenvalues or eigenvectors. It is now necessary to 
connect them to the dielectric susceptibility. 

Let us introduce the following function: 

It is easily shown that on one side 

and on the other side from (55) and (77) 

x.p(o) = @,(U). (79) 

From (73,  (76), (78) and (79) we can evaluate the dielectric susceptibility. Let us now 
introduce the continued fraction. Following Stieltjes (1884) and Royer (1992), we define a 
polynomial Q.(z) of degree n such that 

with the conditions (index (Y and B are omitted for polynomials) 

/g"B(x,y)Q,(z)z'dxdy = O  (k = 0,1,2, .,. , n  - 1). (81) 

With the help of relation (76) we obtain with (80) in (81) 

In classical moment problems (Stieltjes 1884, Walls 1948, Akhieser 1965, Jones and 
Thron 1980, Shohat and Tamarkin 1963) a necessary and sufficient condition for the 
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existence of a solution is the positiveness of the Hankel determinants constructed with 
the moments (Stieltjes 1884, Hamberger 1920) (An > 0 for spectra with distinct points). 
However, recall that the moments problem consists of finding a bounded non-decreasing 
function in a given interval such that its moments have a prescribed set of values. Here we 
know the moments of this function and that this function exists. The problem is to find a 
good development to compute it. In our problem, with the distribution function (72), the 
Hankel determinants are real but not always positive and there are no mathematical studies 
on the existence of solutions, our problem not being equivalent to the moments problem of 
two-dimensional distribution function. We conjecture that solutions to equation (82) exist 
and we shall verify this with several physical examples. 

Now we follow the method developed for the classical moment problem (Royer 1992). 
The polynomials Q.(z) obey the following recurrence law: 

Q ~ + I ( z )  (Z -&+l)Qn(z) - & Q n - r ( d  (83) 

with Q-~(z )  = 0, Q&) = 1 where 

&+I = hI"/V"" (84) 

and 
- 
bn = ~ n n / ~ n - ~ . n - ~  (85) 

with 

v,. = sg'~(x,y)Q,(l)n.(z)dxdy (86) 

and 

Vnn = zg"B(x,~)Q,(z)Q.(z)dxdr. (87) s 
Quantities v, and b. are equivalent to the generalized moments introduced for the usual 

moments problem (Cyrot-Lackmann 1967). It is possible to show that the function 
defined in (75) can be developed in a continued fraction, with demonstration identical to 
those developed in the classical moments problem (Royer 1992). Then we obtain 

bo 
bl 

b2 
U -ag - @- 

& 8 ( U )  = 
U -a ]  - 

U - 0 2 -  

The continued fraction is a limit of a fraction of polynomials and we obtain 

where 
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with Po@) = -bo, P-,(u) = 0 and 

Qntt (u)  = ( u - u n + ~ ) Q n @ )  - b n Q n - t ( ~ )  (91) 
with Qo(u) = 1, e-,@) = 0. 

As n -+ 03, relations (88) or (89) are formally identical to relation (75) and then 
- 

6" =a. b, = b,. (92) 
Relations (84)-(92) allow determination of the dielectric susceptibility or the inelastic 
scattering cross section for damped systems. In practice, the same procedure as described 
in Benoi! et al (1992b) is followed exactly. However, the D matrix being non-symmetric, 
it is necessary to introduce left and right Krylov subspace. We now illustrate this method 
with some examples. 

5. Tests and illustrations 

5.1. One-dimensional linear chain 

Let us consider a chain of N masses, each coupled to its nearest neighbours. We study 
the longitudinal vibrations of this chain and impose cyclic boundary conditions (a closed 
chain). The potential energy is given by (1) with 

(nlDln + 1)  = -[b+ (-1)"kiI 
(nlDln) = - C ( n 1 D 1 n ' ) .  (93) 

d # n  

It is necessary to choose a model for the dissipation matrix ro. Dissipation can be 
introduced by considering the macroscopic equations of hydrodynamics. In such equations, 
the dissipative term corresponds to the viscous force and is taken to be proportional to 
the Laplacian of the velocity field. If we develop a discrete form of motion equation, an 
imaginary matrix that represents the dissipation of energy is obtained. For instance, in 
one-dimensional systems it  is well known that, for a regular lattice, the Laplacian of the 
velocity is represented by 

(94) 
where u(n) is the velocity of the nth atom and U the lattice parameter (here a = 1). This 
equation corresponds to a dissipation matrix with dissipation forces between f is t  neighbours. 
Note that it is necessary to consider all elements of the matrix to obtain a correct physical 
description. For instance, a positive sign of the diagonal elements does not mean that energy 
is created in the material. So we now assume that the dissipation matrix ro is proportional 
to the Laplacian of the velocity field 

AV = [u(n + 1) + u(n - 1) - 2u(n)]/u2 

ro = Y A U  (9.5) 
and we study the infrared absorption of the chain. Let us suppose that the chain is ionic 
with two ions per unit cell. It is well known that only the optical mode of the centre of 
the Brillouin zone is infrared-active. We have determined the imaginary part ~ " ( 0 )  of the 
susceptibility by the moments method and by direct diagonalization. The results are shown 
in figures 1 and 2 for two values of the damping y .  We note that results obtained by both 
methods are in excellent agreement. Values of coefficients a. and b, for both models are 
reported in table 1. In figure 3, we give the dispersion curves, obtained by both methods, 
from the differential scattering cross section of the same chain. Results obtained by direct 
diagonalization and by moments method are in complete agreement. 



Moments metho2 and damped gstems 3151 
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Figure 1. Dielectric susceptibility of a damped chain with ko = 0.125. kl = 0.025 and 
y = 0.001 25 obtzined by diagonalization (--) and with lhe moments method (0). 

0.5 0 7  0.8 

h u e n c y  

Figure 2. Dielechiic susceptibility of a damped cham wifh ko = 0,125, kl = 0.025 and 
y = 0.0125 obtained by diagonalization (-) and with he momenls method (0). 

5.2. Systems with coupling between oscillators and relaxation modes 

Many aspects of a phase transition can be understood on the basis of the phenomenological 
theory: the so-called Landau theory of phase transitions. However, it is important to 
take into account the discreteness effects and microscopic origin of the phenomenological 
parameters. Anharmonic interactions are believed to be responsible for these structural 
phase transitions. If the phonon frequency reaches zero at some temperature, the phonon 
is regarded as condensing into the lattice to give a transition. In contrast, many physical 
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Table 1. Coefficients of the ‘mntinued‘ fnction a. and b. for the perfectly dimcrired chain. 
Only the first mefficients differ from zem. Recall &at, for Ihe harmonic chain, a, differs from 
zero but bl = 0. 

Y al bi 
0.0125 0.05 -0.5 
0.001 25 0.005 -0.5 

o.6 t 

_._ 
0.0 

Wavevector (reduce unit) 

Figure 3. Dispersion curves obtained from the differential scattering cmss section of a damped 
chain with b = 0.125, kl = 0.025 and y = 0.0125 obtained by diagonalization and with 
moments method. The upper and lower CUNE. give the halfwidth of the phonon p d s .  

properties have been explained by supposing the presence of relaxation modes in these 
materials. 

So we consider a system of interacting oscillators and relaxation modes. We shall show 
how to determine the linear response and present some illustrations. 

Let us consider the following equations: 

and 

where z,(n) represents the 01 component of the nth relaxation mode. Equations (96) and 
(97) are the generalization of the Vacher and Boyer (1978) equations developed to study 
propagation of acoustic waves in viscoelastic aniso&opic media, and then they include the 
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model of Christensen (1971) developed for isotropic solids. It is easy to show that relaxation 
modes introduce self-energy in phonon propagators, such that 

II(w) = ATG - iAT-'A-'(Dw + la3) (98) 

where 

G&, n') = G,g(n,n')/mA!2 (101) 

which is equivalent to (26) with H = ATG, K = 0, L = AT-IA-ID and M = AT-lA-I. 
Recall that we consider the response of the system, i.e. that w is a real variable. In order to 
compute with constant matrices, we now follow the same formalism developed in section 
3. Equations (96) and (97) can be written in matrix form with 

We obtain 

with 

D = D O A  (E ,I e ,  
The response function can be obtained by using the expressions (53) and (54) but with 

0 0 0  

Q being the charge matrix [q.,&)/mA'2]8,nf for determination of dielectric susceptibility 
and (b./mA/2)Qd. exp(-W.)exp(-iQd . m) for determination of the inelastic scattering 
cross section. 

To illustrate the method, we consider, as a physical example, the phonon dispersion of 
the soft branch in K2Se04 (Axe et al 1980). The microscopic origin of the instability has 
been discussed in detail by Haque and Hardy (1980) and Bussman-Holder et al (1981): 
competition between long-range Coulomb interactions and short-range overlap forces are 
believed to be responsible for the occurrence of instability in ionic crystals. However, 
physical discussion of the origin of instability is beyond the scope of this paper. 

Let us consider a linear chain of oscillators coupled to a h e a r  chain of relaxation 
modes. The chain consists of identical atoms with first-neighbour interaction only 

(n(D\n t 1) = -k~. ( 106) 
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In this simple example, suppose that 

(nldln + m) = (nlAln t m) = r(nliln t m) = -g, m = 1 , ~ .  . . , 5  (107) 

i.e. long-range interactions are included until the fifth neighbour. Experimental and 
calculated phonon branches are reported in figure 4 for four temperatures. The theoretical 
results can be obtained by three different methods. In the first two methods we used 
the transitional invariance of the system and the solutions have been developed in Bloch 
representation Ik). In this representation, the dynamic matrix is a 3 x 3 complex non- 
symmetric matrix. The response functions are obtained either by direct diagonalization, or 
by the moments method as described in previous section, but now in Fourier space. It is 
also possible to use the moments method directly on the large system with cyclic boundary 
conditions. The three methods give exactly the same result. In this example, we have 
used a chain with 360 atoms corresponding to a 1080 x 1080 dynamic matrix. The values 
of the parameters r and g, are reported in table 2. In the fitting process, we have used 
the 130 K and 750 K phonon branches and supposed linear dependence with temperature 
for the coefficients g,; r is adjusted for every temperature. The dependence of r with 
temperature is reported in figure 5. One notes that r varies linearly with temperature. We 
observe general qualitative agreement with the experiment. 

3 

1 

0 I I I I ' >  
0.0 0.2 0.4 0.6 0.8 1.0 

WAVEVECTOR (reduce itiiits ) 

Figure 4. Dispersion curves obtained in &Se04 for four tempera-: full curves rcpresenl the 
erpwimental results and symbols the theoretical results. Parameters of the model are reported 
in table 2. The system is perfectly ordered. 

Let us now consider a disordered system. Here we assume that the coupling constants 
are given by 

(nlaln + m) = (nlAln + m )  = s(nlTln + m) = -gm(l + y d .  (108) 
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Table 2 Parameters of the long-range interaction between the relaxadon modes. We used the 
130 K and 250 K phonon branches to adjust these parameters and supposed linear dependence 
with temperature for the g, coefficients. Parameter T is adjusted for every temperature. 

T (K) gi g2 83 g4 8s r 
130 0.340 0.00 0.0935 0.00 0.0153 0.357 
145 0.346 0.0187 0.0914 0.00 0.0153 0.364 
175 0.359 0.0374 0.0871 0.00 0.0153 0.391 
250 0.391 0.0595 0.0765 0.00 0.0153 0.437 

0.15 I t 
i o 0  150 200 250 300 

Temperatwe 

Figure 5. Variation of parameter T with temperature. 

The yn are independent random variables distributed according to the continuous bounded 
probability density function P ( y ) ,  which is zero except in the region -1 < y < 1 where 
P ( y )  = 0.5. We computed the phonon branches for different values of the temperature with 
a chain of 360 atoms. The results are reported in figure 6. We observe that the disorder 
enlarges the region of unstable phonons. 

We note also that the method is not so well conditioned as in the case of pure harmonic 
systems and some difficulties may occur. For instance, the position of point Qd = 0.75 
(T = 130 K. figure 6) is certainly wrong. This problem could be due to the choice of the 
form of the infinite tail of the continued fraction. 

5.3. Systems with electron-phonon coupling 

It is well known that the one-dimensional (ID) metal is intrinsically unstable to the 
formation of charge-density waves (Peierls 1955). For instance, TTF-TCNQ (tetrathiafulvalene 
tehacyanoquinodimethane) is a one-dimensional metal at high temperature that undergoes a 
metal-insulator transition at 54 K (Heeger and Garito 1975). Inelastic neutron studies of the 
phonon spechum reveal a giant Kohn anomaly at room temperature, which becomes stronger 
at low temperature (ComEs et a1 1976). One method involves viewing Peierls instability 
in terms of the electronic dielectric response function, which is related to the Lindhard 
function (Heeger 1977). It is also possible to study Peierls instability using the Green 
function (Schultz 1978) in Fourier space. To illustrate the moments method, we shall study 
Peierls instability in direct space with the help of the SSH Hamiltonian (21). In the presence 
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O Y  I 1 I I I b  

0.0 0 2  0.4 0.6 0.8 1.0 
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Figwe 6. Dispersion curyes obtained with L e  same model as reported in figure 4 in the presence 
of disorder for four tempenrums: symbols represent the Lheoreiical results. Experimental results 
are reported for wmpaxison with the ordered model. 

of elecnon-phonon coupling, the phonon Green function is given by expression (16) with 
self-energy given by (23). To study Peierls instability or Kohn anomaly, we computed the 
dispersion curve. The differential scattering cross section is calculated for different values 
of the momentum transfer inside the first Brillouin zone. However, with value (23) for the 
self-energy, it is not possible to reduce the manices to frequency-independent elements as 
we did for constant damping and for systems with coupling between relaxation modes and 
oscillators. To evaluate the differential scattering cross section, it  is interesting to work with 
real matrices and separate the real part A(o) and the imaginary part r ( w )  of n(o). The 
equation (28). without the external field, can be written as: 

dlR)/dt = -D(w) lR)  (109) 

with 

To compute the response of the system, we follow exactly the same procedure as for the 
system with constant damping. For a given value of the frequency in the self-energy, we 
evaluate the differential scattering cross section and memorize the value obtained for this 
frequency. The dispersion curves obtained for a chain of 120 atoms by this method and 
by direct diagonalization, with K = 0.0011 eV A-’, to = 1 eV, 01 = 0.00356 eV .&-I,  
T = 40 K, are reported in figure 7 for a half-filled band (Fermi wavevector kF = n/Za). We 
note excellent agreement between both results. With this system, the Kohn anomaly appears 
for the phonon q = 2 k ~  at the first Brillouin zone boundary. Our result is in agreement with 
the theory. We also compute the dispersion curves with the help of the Lindhard function. 
This method does take into account the imaginary part of the phonon frequency. However, 
the results are in general agreement with those obtained by direct diagonalization or the 
moments method. 



Moments method and damped systems 3157 

0.0 1:2 0:' 0.B 0.8 1.0 

wavewetor (wduce units) 

Figure 7. Dispersion curves obtained with a linear chain in the presence of electron-phonon 
coupling for a half-fiUed band (T = 40 K) with direcl diagonalization (0) and by the moments 
method (.I. The number of calculated coefficients a. and b. depends on the pint  of the Brillouin 
mne and varies f" 4 to 35. Recall that the iterations stop when one coefficient b. is lower 
than a given value. 

6. Discussion and conclusion 

The work presented here concerns the first step in developing a general computing method 
to evaluate physial properties of very large disordered systems with damping. In fact, 
the response function (12) is a bilinear combination of the Green functions of the system, 
and the problem involves determining these Green functions. To compute these functions 
directly, it is necessary first to determine the self-energy and then the Green function 
itself. Determination of the self-energy and response function requires the computation 
of all eigenvalues and eigenvectors of a general non-symmetric matrix, which is actually 
impossible in very large disordered systems. The same problem exists for harmonic materials 
and it is known that, in this case, research on solutions by developing the Green function in 
continued fractions is particularly well adapted: every step of the development represents 
an approximation of the genuine Green function. For instance, if we stop development 
of the continued fraction of the first order, the Green function obtained corresponds to an 
Einstein (one-body) material with a frequency that is a mean value of the frequencies of the 
real system. At the next step (second order), the Green function corresponds to a two-body 
system (for example, two interacting atoms in a well) with frequencies that are related to the 
entire real material and thus take the disorder into account. With 200 (or more) generalized 
moments, one obtains a 200-body (or more) Green function, which represents a very good 
approximation of the exact Green function of the whole system. It was thus very interesting 
to look for this type of solution for damped materials. However, to simplify the problem, 
in this first paper, we supposed that the self-energy is a known function. 

Following the method developed in Benoit (1987), we introduced an auxiliary 
distribution function (72). We have shown that, on the one hand, the hansform (73) of 
this function can be expanded in a continued fraction and, on the other, (72) is related to 
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the response function. From a mathematical point of view, the positiveness of the Hankel 
determinants is connected to the existence of a d-dimensional distribution function. In this 
work, the auxiliary function (72) is a two-dimensional density function with complex weight 
and so the Hankel determinants, and then the coefficients b,, can be negative. However, 
development in the continued fraction exists and is convergent. Note that a sufficient 
condition for the d-dimensional moments problem to be determined is that the series of 
power -1 f2n of the sum of the two-dimensional moments p2.0 and p0.b goes to infinity 
(Shohat and Tamarkin (1963)). The distribution function (72) being bounded, it is clear that 
this condition is satisfied here. 

The next step now concerns determination of the self energy (17) or (23) using 
the moments method. For anharmonic systems, evaluation of (17), without explicit 
determination of the eigenfrequencies and eigenvectors, is a very difficult problem. 
However, an approximate method developed for determination of second-order processes 
has been proposed in Benoit (1987) and could allow evaluation of (17). For systems with 
electron-phonon coupling, evaluation of (23) can be obtained by determination of the one- 
electron Green functions, using for instance the Kubo-Greenwood formula (Mayou 1988), 
which is easy with the moments method (Benoit er al 1992b). Finally, it is necessary, as 
for the usual moments method, to study in detail the behaviour of the infinite tail of the 
continued fraction in order to improve the convergence. 

The method docs not depend on the type of potential or structure of the material and so 
can be used to compute the response functions of any type of system, fractal, disordered,. . . , 
in d-dimensional space. The reported examples show that this method is a powerful tool. 

Appendix 

Let us define IM) such that, in the dipolar approximation, 

and the total electric dipole moment is given by 

" n 

With the help of (Z), (Al) and the Q matrix, equation (11) can be written 

IM(r)) = QlxW).  (A31 

The solution of (ZS), with the help of (29) and (30), is given by 

IX(t)) = 6 1 G(r - t')QlE(t')) dr'. 

From (A3) and (A4) we obtain 

IM(r)) = QlX(t)) = QG(r - r')QlE(t')) dt'. (A5) 
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From (A2) and (As) we obtain 

M. = X ( E ~  I M )  = P s  x ( ~ n l Q G ( t  - t')Q[pn')(pn' I E@'))  dt' 
n pnn' 

= f i ~ / ~ ( ~ n l Q G ( t  - t')QIBn')Ea(t')dt' 
p nn' 

and the susceptibility tensor being given by 

IM(t ) )  = / x ( t  -t')lE(t'))dt' 

from (A6) and (A7) we obtain 

xap = B C(anlQGQlPn') 
n"' 

identical to expression (12). 
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